Indexed by:
Abstract:
U-Net is a classic architecture for semantic segmentation. However, it has several limitations, such as difficulty in capturing complex images detail due to its simple U structure, long convergence time arising from fixed network parameters, and suboptimal efficacy in decoding and restoring multi-scale information. To deal with the above issues, we propose a Multiple U-shaped network (Multi-UNet) assuming that constructing appropriate U-shaped structure can achieve better segmentation performance. Firstly, inspired by the concept of connecting multiple similar blocks, our Multi-UNet consists of multiple U-block modules, with each succeeding module directly connected to the previous one to facilitate data transmission between different U structures. We refer to the original bridge connections of U-Net as Intra-U connections and introduce a new type of connection called Inter-U connections. These Inter-U connections aim to retain as much detailed information as possible, enabling effective detection of complex images. Secondly, while maintaining Mean Intersection over Union (Mean-IoU), the up-sampling of each U applies uniformly small channel values to reduce the number of model parameters. Thirdly, a Spatial-Channel Parallel Attention Fusion (SCPAF) module is designed at the initial layer of every subsampling module of U-block architecture. It enhances feature extraction and alleviate computational overhead associated with data transmission. Finally, we replace the final up-sampling module with Atrous Spatial Pyramid Pooling Head (ASPPHead) to accomplish seamless multi-scale feature extraction. Our experiments are compared and analyzed with advanced models on three public datasets, and it can be concluded that the universality and accuracy of Multi-UNet network are superior.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
KNOWLEDGE-BASED SYSTEMS
ISSN: 0950-7051
Year: 2025
Volume: 309
7 . 2 0 0
JCR@2023
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2