• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Jiang, Yuewen (Jiang, Yuewen.) [1] (Scholars:江岳文) | Lin, Peiling (Lin, Peiling.) [2] | Huang, Chongyang (Huang, Chongyang.) [3]

Indexed by:

EI Scopus

Abstract:

To effectively address the issues of low utilization and challenging cost recovery in distributed energy storage, it is crucial to study trading mechanisms tailored to distributed energy storage. The business model of the sharing economy applied to the energy storage field has potential, and many existing methods have implemented diverse energy sharing transactions using blockchain technology. However, these studies have not adequately considered the convenience of energy storage operations. To tackle this problem, this paper views energy storage as a physical device and designs a more user-friendly coupled charging and discharging sharing mechanism. This approach reduces transaction risks while enhancing the control rights of energy storage participants. First, a business model for energy storage sharing was explored, and a sharing mechanism that separates ownership and usage rights was studied. The trading process, application scenarios, pricing mechanisms, credit management, settlement mechanisms, and rolling trading models supported by blockchain technology were investigated. An optimization model for energy storage sharing that couples charging and discharging rights was established. Then, a decentralized and privacy-focused blockchain platform was built. Smart contracts were used to facilitate the transfer of energy usage rights and control of charging and discharging. This platform ensures the sustainability of energy storage systems while highlighting their role as leaseable physical assets. By simulating scenarios where distributed energy sources and electricity consumers participate in energy storage sharing for deviation handling, we assess the feasibility of the energy storage sharing market. From the perspective of energy storage, profitability depends on initial investment and maintenance costs, as well as equipment parameters. Under current cost levels, energy storage systems with power-to-capacity ratios exceeding 1/4 can profit in this market. From the perspective of energy storage participants, if market prices for distributed electricity transactions are higher than 0.74 ¥/(kW∙h), and the price difference between peak and off-peak electricity sales is greater than 0.4 ¥/(kW∙h), market participants can gain 2.4% to 14.3% more profit through energy storage sharing than through grid backup mode. Conversely, when market prices are lower and price differences are smaller, participants may earn 0.71% to 10.69% less through energy storage sharing. Thus, under specific market conditions, distributed energy storage sharing can create mutually beneficial transactions. Additionally, blockchain technology supports an automated end-to-end trading process, including transaction submission, matching, energy usage rights transfer, on-chain data storage, and real-time settlement. The following conclusions can be drawn from the simulation analysis: (1) The profitability of energy storage participation in the sharing market is subject to the constraints of initial construction, operational costs, and the parameters of energy storage devices. Technological improvements, coupled with cost reductions, are expected to promote the development of the energy storage sharing market. (2)Market conditions characterized by significant fluctuations in grid electricity prices and high levels of trading prices for distributed electricity are more likely to attract market participants to engage in energy storage sharing transactions. (3)Blockchain technology ensures transparency and traceability in energy storage sharing transactions while enhancing the trust of energy storage sharing participants in the platform. This provides robust technical support for the further implementation and promotion of distributed energy storage sharing transactions. © 2024 China Machine Press. All rights reserved.

Keyword:

Blockchain Commerce Costs Investments Profitability

Community:

  • [ 1 ] [Jiang, Yuewen]College of Electrical Engineering, Automation Fuzhou University, Fuzhou; 350108, China
  • [ 2 ] [Jiang, Yuewen]Fujian Province University, Engineering Research Center of Smart Distribution Grid Equipment, Fuzhou; 350108, China
  • [ 3 ] [Jiang, Yuewen]Research Center of Integrated Energy Planning and Optimal Operation, Fuzhou University, Fuzhou; 350108, China
  • [ 4 ] [Lin, Peiling]College of Electrical Engineering, Automation Fuzhou University, Fuzhou; 350108, China
  • [ 5 ] [Huang, Chongyang]College of Electrical Engineering, Automation Fuzhou University, Fuzhou; 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Transactions of China Electrotechnical Society

ISSN: 1000-6753

Year: 2024

Issue: 23

Volume: 39

Page: 7512-7527

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:105/10273696
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1