Indexed by:
Abstract:
Graph convolutional network has emerged as a focal point in machine learning because of its robust graph processing capability. Most existing graph convolutional network-based approaches are designed for single- view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the complexity of multiple views, normal graph generation methods cannot mitigate redundancy to generate a high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi- view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views. Meanwhile, the latter seeks to construct an adjacency graph according to the characteristics of paths within the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph. Extensive experimental results robustly demonstrate the superior performance of our proposed framework, compared to other state-of-the-art multi-view semi-supervised approaches.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
EXPERT SYSTEMS WITH APPLICATIONS
ISSN: 0957-4174
Year: 2024
Volume: 263
7 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: