• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Guo, Weiqiang (Guo, Weiqiang.) [1] | Briseghella, Bruno (Briseghella, Bruno.) [2] (Scholars:BRUNO BRISEGHLLA) | Xue, Junqing (Xue, Junqing.) [3] (Scholars:薛俊青) | Nuti, Camillo (Nuti, Camillo.) [4] | Huang, Fuyun (Huang, Fuyun.) [5] (Scholars:黄福云)

Indexed by:

EI Scopus SCIE

Abstract:

Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling during an earthquake. The soil behind the abutment can provide a damping effect to reduce the deformation of the structure under a seismic load. Girders have not been considered in some of the existing published experimental tests on integral abutment-reinforced-concrete (RC) pile (IAP)-soil systems, which may not accurately represent real conditions. A pseudo-static low-cycle test on a girder-integral abutment-RC pile (GIAP)-soil system was conducted for an IAB in China. The experiment's results for the GIAP specimen were compared with those of the IAP specimen, including the failure mode, hysteretic curve, energy dissipation capacity, skeleton curve, stiffness degradation, and displacement ductility. The test results indicate that the failure modes of both specimens were different. For the IAP specimen, the pile cracked at a displacement of +2 mm, while the abutment did not crack during the test. For the GIAP specimen, the pile cracked at a displacement of -8 mm, and the abutment cracked at a displacement of 50 mm. The failure mode of the specimen changed from severe damage to the pile top under a small displacement to damage to both the abutment and pile top under a large displacement. Compared with the IAP specimen, the initial stiffness under positive horizontal displacement (39.2%), residual force accumulation (22.6%), residual deformation (12.6%), range of the elastoplastic stage in the skeleton curve, and stiffness degradation of the GIAP specimen were smaller; however, the initial stiffness under negative horizontal displacement (112.6%), displacement ductility coefficient (67.2%), average equivalent viscous damping ratio (30.8%), yield load (20.4%), ultimate load (7.8%), and range of the elastic stage in the skeleton curve of the GIAP specimen were larger. In summary, the seismic performance of the GIAP-soil system was better than that of the IAP-soil system. Therefore, to accurately reflect the seismic performance of GIAP-soil systems in IABs, it is suggested to consider the influence of the girder.

Keyword:

bridge engineering displacement ductility equivalent viscous damping ratio integral abutment bridge pseudo-static test seismic performance

Community:

  • [ 1 ] [Guo, Weiqiang]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 2 ] [Briseghella, Bruno]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 3 ] [Xue, Junqing]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 4 ] [Nuti, Camillo]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 5 ] [Huang, Fuyun]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 6 ] [Briseghella, Bruno]Fuzhou Univ, Fujian Prov Key Lab Multidisasters Prevent & Mitig, Fuzhou 350108, Peoples R China
  • [ 7 ] [Xue, Junqing]Fuzhou Univ, Fujian Prov Key Lab Multidisasters Prevent & Mitig, Fuzhou 350108, Peoples R China
  • [ 8 ] [Huang, Fuyun]Fuzhou Univ, Fujian Prov Key Lab Multidisasters Prevent & Mitig, Fuzhou 350108, Peoples R China
  • [ 9 ] [Briseghella, Bruno]Fuzhou Univ, Coll Civil Engn, Joint Int Res Lab Deteriorat & Control Coastal & M, Fuzhou 350108, Peoples R China
  • [ 10 ] [Xue, Junqing]Fuzhou Univ, Coll Civil Engn, Joint Int Res Lab Deteriorat & Control Coastal & M, Fuzhou 350108, Peoples R China
  • [ 11 ] [Nuti, Camillo]Roma Tre Univ, Dept Architecture, I-00153 Rome, Italy

Reprint 's Address:

  • 薛俊青

    [Xue, Junqing]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China;;[Xue, Junqing]Fuzhou Univ, Fujian Prov Key Lab Multidisasters Prevent & Mitig, Fuzhou 350108, Peoples R China;;[Xue, Junqing]Fuzhou Univ, Coll Civil Engn, Joint Int Res Lab Deteriorat & Control Coastal & M, Fuzhou 350108, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED SCIENCES-BASEL

Year: 2024

Issue: 22

Volume: 14

2 . 5 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:69/10047523
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1