Indexed by:
Abstract:
Inspired by human sense organs, AI is advancing toward multimodal perception, with display technology evolving into intelligent human-computer interaction tools. However, hardware networks with multimodal responses connected by different devices bring problems such as delayed information transfer and inefficiency. Thus, an innovative three-mode photosensitive synaptic LED (PSSL) is first proposed by adding a photosensitive layer indacenodithiophene-benzothiadiazole (IDTBT) to the quantum-dot light-emitting diode (QLED), switched by changing the bias voltage. The self-powered PSSL has a photoresponse range from 310 nm to 808 nm (ultraviolet-near-infrared, UV-NIR). The device exhibits a bipolar response under red and UV light at 1 V. When the voltage reaches the turn-on voltage, the PSSL device turns into a neuromorphic LED, exhibiting conductivity enhancement under red-light irradiation and suppression under UV-light irradiation. As a result, the PSSLs are expected to be applied in the field of optical encryption communication and in neuromorphic display. © 2024 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Nano Letters
ISSN: 1530-6984
Year: 2024
Issue: 44
Volume: 24
Page: 14109-14117
9 . 6 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: