Indexed by:
Abstract:
Chronic wounds with multidrug-resistant bacterial infections substantially delay the healing procedure and correlate with clinical implications, including pain increase and quality of life reduction. Therapeutic approaches that could kill bacteria and promote wound healing are highly desired for the treatment of chronic nonhealing wounds. Metal oxide-based nanoagents show increasing potential as a burgeoning type of antibiotic for multidrug-resistant bacterial infections. In this study, we developed two kinds of Fe- and Ca-incorporating mesoporous silica nanoparticles (FeCaSi) via a simple and practicable strategy. They can be applied for the administration of bacterial infection and wound healing. The antibacterial properties of FeCaSi nanoagents include bacterial cell wall capturing and subsequent reactive oxygen species (ROS)-producing activity; besides, the killing capacity can be tailored by adjusting the ratio between Fe and Ca to be 4:3 (FeCaSi4:3), which is optimal for the eradication of drug-resistant Escherichia coli and Staphylococcus aureus infection. Furthermore, treatment with FeCaSi4:3 could reduce the bacteria in the skin, promote collagen deposition, and accelerate the healing of bacterial-infected wounds in mice. Our study provided a simple but powerful way to engineer metal oxide mesoporous nanoparticles for antibacterial therapy.
Keyword:
Reprint 's Address:
Version:
Source :
ACS APPLIED NANO MATERIALS
Year: 2024
Issue: 21
Volume: 7
Page: 24334-24345
5 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: