Indexed by:
Abstract:
In this paper, the issue of distributed adaptive finite-time fault-tolerant cooperative control (FT-FTCC) problem is investigated for multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with unknown parameter uncertainties, actuator faults, input saturation and external disturbances. Starting from the dynamic models of the UAVs and UGVs, an unified control model is presented. Then, a sliding-mode estimator is presented to estimate the position of the leader for the followers which only uses the information from neighbours. Next, a distributed adaptive FT-FTCC scheme, which can also deal with the uncertainties, actuator faults, input saturation and disturbances, is proposed by utilising disturbance observers and neural networks. Based on Lyapunov function approach, the tracking errors of all followers subject to the pre-defined desired positions are uniformly ultimately bounded. Finally, simulations are given to validate the efficiency of the developed FT-FTCC scheme.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
ISSN: 0020-7721
Year: 2024
Issue: 7
Volume: 56
Page: 1442-1456
4 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: