Indexed by:
Abstract:
Fully Homomorphic Encryption (FHE) is a key technology enabling privacy-preserving computing. However, the fundamental challenge of FHE is its inefficiency, due primarily to the underlying polynomial computations with high computation complexity and extremely time-consuming ciphertext maintenance operations. To tackle this challenge, various FHE accelerators have recently been proposed by both research and industrial communities. This article takes the first initiative to conduct a systematic study on the 14 FHE accelerators: cuHE/cuFHE, nuFHE, HEAT, HEAX, HEXL, HEXL-FPGA, 100x, F1, CraterLake, BTS, ARK, Poseidon, FAB, and TensorFHE. We first make our observations on the evolution trajectory of these existing FHE accelerators to establish a qualitative connection between them. Then, we perform testbed evaluations of representative open-source FHE accelerators to provide a quantitative comparison on them. Finally, with the insights learned from both qualitative and quantitative studies, we discuss potential directions to inform the future design and implementation for FHE accelerators.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACM COMPUTING SURVEYS
ISSN: 0360-0300
Year: 2024
Issue: 12
Volume: 56
2 3 . 8 0 0
JCR@2023
Affiliated Colleges: