Indexed by:
Abstract:
Electrocatalytic reduction of nitrate (NO3- ) to ammonium (NH4+) is an environment friendly approach for treating nitrogen-containing wastewater. Consequently, electrocatalysts capable of effectively and selectively reducing NO3 - to NH4+ receives growing attention. However, Cu-based catalysts demonstrate limited efficiency and the drawback of generating toxic NO2 - though it is prevalent in the field of electrocatalytic reduction of NO3 (NO3RR). In this work, a CuNi alloy was synthesized on a Co foil through electrodeposition (marked as CuNi@Co) and its electrocatalytic performance for NO3RR was evaluated. XRD, EDS mapping and XPS characterization indicate CuNi exists with alloy state. Electrocatalytic experiments demonstrate that CuNi@Co exhibits an exceptional FENH3 of 99.12% at -0.64 V (vs. RHE). Importantly, no detrimental NO2 - generated during NO3RR process because the reduction rate from NO2 - to NH4+ is faster than that from NO3 - to NO2- . Mechanistic analysis suggests that Cu serves as a 'reservoir' to provide electrons to facilitate the reduction of NO3 - to NO2during NO3RR process and the synergistic effect of Ni and Cu promotes more active hydrogen (H*) to participate the reduction process of NO2 - to NH4+ not H2 generation, ultimately improving FENH3. This work elucidates the role of electrons and H* in electrocatalytic nitrate reduction to ammonium for CuNi alloy, providing new insights into the reduction process of NO3RR for Cu-based materials.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SURFACES AND INTERFACES
ISSN: 2468-0230
Year: 2024
Volume: 54
5 . 7 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: