Indexed by:
Abstract:
Automated vehicles equipped with adaptive cruise control systems (ACC-AVs) are prevalent and the ensuing issue is the feasibility of ACC-AVs' operation on the roads. This study investigates the feasibility of road horizontal curve designs for ACC-AVs from a vehicle dynamics perspective. Following the scenario generation framework, we created and tested several scenarios featuring horizontal geometric elements and design speeds, conducting a safety evaluation based on the critical adhesion coefficient, lateral acceleration, lateral-load transfer rate, together with driving comfort indicators. Results indicate that ACC-AV can navigate on road curves designed with a common minimum radius (Rmin_com) effectively at speeds over 60 km/h, comparable to conventional vehicles. However, both Rmin_com and limited minimum radius (Rmin_lim) designs show limitations. Additionally, the feasible radius ranges for ACC-AV reveal the capability to safely handle sharper curves and maintain higher speeds, suggesting potential for adaptable road design in complex environments. Finally, minimum radius ranges were summarized for ACC-AV safe and comfortable operation on road curves, unveiling the potential risks and reminding designers in curve design controls for ACC-AVs.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS
ISSN: 2473-2907
Year: 2024
Issue: 10
Volume: 150
1 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: