Indexed by:
Abstract:
Photoassisted lithium-ion batteries provide an effective solution to improve the capacity and round-trip efficiency of batteries by utilizing solar energy. However, there is still a big challenge to develop key photoelectrochemical energy storage materials for simultaneous light harvesting and energy storage. Here, we presented a redox-active metal-organic framework (MOF) material with Ni2+ and naphthalenediimide salicylic acid ligand (NDISA) as photoactive electrodes. The designed Ni-NDISA material exhibited reversible electrochemical redox activity on the naphthalenediimide unit and showed efficient photoinduced metal-ligand charge transfer to realize solar-to-electrochemical energy conversion and storage. With the Ni-NDISA as a bifunctional cathode, a photoassisted lithium-ion battery delivered an extra 13.1% of round-trip efficiency and improved specific capacity (82.0 mA h g(-1) under dark to 200.0 mA h g(-1) under 1 sun illumination). This work presents an optional way to design photoelectrochemical energy storage materials and opens up opportunities for solar to electrochemical energy storage devices.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED ENERGY MATERIALS
ISSN: 2574-0962
Year: 2024
Issue: 15
Volume: 7
Page: 6342-6348
5 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: