Indexed by:
Abstract:
During the five-axis flank milling process, the uncut chip area varies continuously with the cutter motion, which leads to a challenging issue for the geometric construction of the instantaneous uncut chip thickness (IUCT). In this paper, a novel approach to calculate the IUCT effectively considering the cutter runout effect is proposed. The element motion of the cutter extracted from the cutter location file (CLF) is described with one linear variable and two angular variables, which are necessary factors in the IUCT calculation of five-axis milling. The geometry relationship between cutter motion and IUCT has been analyzed, and the parametric expression of IUCT in five-axis milling can be deduced to predict the cutting force. The explicit five-axis IUCT expression facilitates a more comprehensive understanding of the key parameters in the cutting process, which could be helpful in optimizing the processing parameters. Compared to the numerical method based on true tooth trajectories, the time consumption of the proposed method is reduced greatly in the simulation. The experiment of five-axis flank milling is carried out, and the result reveals that the presented method can be well applied to the practical milling process. We believe that the IUCT model in this paper will promote the simulation and optimization system in five-axis machining.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
ISSN: 0268-3768
Year: 2024
Issue: 11-12
Volume: 134
Page: 5253-5266
2 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: