Indexed by:
Abstract:
A large amount of organophosphorus-containing wastewater is produced in spent lithium-ion battery disposal. Forward osmosis (FO) offers unique advantages in purifying this kind of wastewater if suitable draw solutes - the core of FO technology, are available. Herein we synthesize several pH-sensitive zinc complexes, namely ZnATMP-iNa (i = 0, 1, 2, 3, 4), from ZnSO4 and amino tris(methylene phosphonic acid) (ATMP) obtained from scale inhibitor wastes for organophosphorus-containing wastewater remediation. Among these ZnATMP-iNa, ZnATMP-3Na best meets the standards of an ideal draw solute. This makes ZnATMP-3Na outperform other reported draw solutes. 0.6 M ZnATMP-3Na produces a water flux of 12.7 LMH, 136 % higher than that of NaCl and a solute loss of 0.015 g/L, lower than that of NH4HCO3 (0.83 g/L). In organophosphorus-containing wastewater treatment, ZnATMP-3Na has higher water recovery efficiency (8.3 LMH) and sustainability than NaCl and NH4HCO3, and is sufficient to handle large quantities of wastewater. Remarkably, the pH-responsive property allows ZnATMP-3Na to be readily recovered through pH-control and reused in FO. The ionic property, expanded cage-like structure and easy-recycling make ZnATMP-3Na achieve sustainable FO separation and superior to other draw solutes. This study provides inspiration for draw solute design from wastes and extends FO application to organophosphorus-containing wastewater remediation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
WATER RESEARCH
ISSN: 0043-1354
Year: 2024
Volume: 260
1 1 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: