Indexed by:
Abstract:
The application of artificial intelligence in electrocardiogram (ECG) diagnosis holds substantial significance. Most ECG classification methods concatenate 12-lead ECG into a 2-D matrix for model input. This study proposed a multi-branch and multi-class model for arrhythmias classification. The model utilizes selective kernel block to independently extract features from each lead, which are fed into Bi-LSTM for fusion. Additionally, batch-free normalization module is employed to reduce estimation shift. Finally, the proposed model achieved an accuracy of 0.871 and a macro F1 score of 0.841 in identifying nine types of arrhythmias. © 2024 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2024
Page: 575-576
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0