Indexed by:
Abstract:
Nowadays, orthodontics has become an important part of modern personal life to assist one in improving mastication and raising self-esteem. However, the quality of orthodontic treatment still heavily relies on the empirical evaluation of experienced doctors, which lacks quantitative assessment and requires patients to visit clinics frequently for in-person examination. To resolve the aforementioned problem, we propose a novel and practical mobile device-based framework for precisely measuring tooth movement in treatment, so as to simplify and strengthen the traditional tooth monitoring process. To this end, we formulate the tooth movement monitoring task as a multi-view multi-object pose estimation problem via different views that capture multiple texture-less and severely occluded objects (i.e. teeth). Specifically, we exploit a pre-scanned 3D tooth model and a sparse set of multi-view tooth images as inputs for our proposed tooth monitoring framework. After extracting tooth contours and localizing the initial camera pose of each view from the initial configuration, we propose a joint pose estimation scheme to precisely estimate the 3D pose of each individual tooth, so as to infer their relative offsets during treatment. Furthermore, we introduce the metric of Relative Pose Bias to evaluate the individual tooth pose accuracy in a small scale. We demonstrate that our approach is capable of reaching high accuracy and efficiency as practical orthodontic treatment monitoring requires. © 1995-2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Transactions on Visualization and Computer Graphics
ISSN: 1077-2626
Year: 2024
4 . 7 0 0
JCR@2023
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: