Indexed by:
Abstract:
The high-speed movement of Vehicle Users (VUs) in Cognitive Internet of Vehicles (CIoV) causes rapid changes in users location and path loss. In the case of imperfect control channels, the influence of high-speed movement increases the probability of error in sending local spectrum sensing decisions by VUs. On the other hand, Malicious Vehicle Users (MVUs) can launch Spectrum Sensing Data Falsification (SSDF) attacks to deteriorate the spectrum sensing decisions, mislead the final spectrum sensing decisions of Collaborative Spectrum Sensing (CSS), and bring serious security problems to the system. In addition, the high-speed movement can increases the concealment of the MVUs. In this paper, we study the scenario of VUs moving at high speeds, and data transmission in an imperfect control channel, and propose a blockchain-based method to defend against massive SSDF attacks in CIoV networks to prevennt independent and cooperative attacks from MVUs. The proposed method combines blockchain with spectrum sensing and spectrum access, abandons the decision-making mechanism of the Fusion Center (FC) in the traditional CSS, adopts distributed decision-making, and uses Prospect Theory (PT) modeling in the decision-making process, effectively improves the correct rate of final spectrum sensing decision in the case of multiple attacks. The local spectrum sensing decisions of VUs are packaged into blocks and uploaded after the final decision to achieve more accurate and secure spectrum sensing, and then identify MVUs by the reputation value. In addition, a smart contract that changes the mining difficulty of VUs based on their reputation values is proposed. It makes the mining difficulty of MVUs more difficult and effectively limits MVUs' access to the spectrum band. The final simulation results demonstrate the validity and superiority of the proposed method compared with traditional methods.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
ISSN: 0018-9545
Year: 2024
Issue: 5
Volume: 73
Page: 6954-6967
6 . 1 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1