Indexed by:
Abstract:
The graph-information-based fuzzy clustering has shown promising results in various datasets. However, its performance is hindered when dealing with high-dimensional data due to challenges related to redundant information and sensitivity to the similarity matrix design. To address these limitations, this article proposes an implicit fuzzy k-means (FKMs) model that enhances graph-based fuzzy clustering for high-dimensional data. Instead of explicitly designing a similarity matrix, our approach leverages the fuzzy partition result obtained from the implicit FKMs model to generate an effective similarity matrix. We employ a projection-based technique to handle redundant information, eliminating the need for specific feature extraction methods. By formulating the fuzzy clustering model solely based on the similarity matrix derived from the membership matrix, we mitigate issues, such as dependence on initial values and random fluctuations in clustering results. This innovative approach significantly improves the competitiveness of graph-enhanced fuzzy clustering for high-dimensional data. We present an efficient iterative optimization algorithm for our model and demonstrate its effectiveness through theoretical analysis and experimental comparisons with other state-of-the-art methods, showcasing its superior performance.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON CYBERNETICS
ISSN: 2168-2267
Year: 2024
9 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: