• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

刘文犀 (刘文犀.) [1] (Scholars:刘文犀) | 张家榜 (张家榜.) [2] | 李悦洲 (李悦洲.) [3] | 赖宇 (赖宇.) [4] | 牛玉贞 (牛玉贞.) [5] (Scholars:牛玉贞)

Abstract:

伪装目标检测旨在检测隐藏在复杂环境中的高度隐蔽物体,在医学、农业等多个领域有重要应用价值.现有方法结合边界先验过分强调边界区域,对伪装目标内部信息的表征不足,导致模型对伪装目标的内部区域检测不准确.同时,已有方法缺乏对伪装目标前景特征的有效挖掘,使背景区域被误检为伪装目标.为解决上述问题,本文提出一种基于边界特征融合和前景引导的伪装目标检测方法,该方法由特征提取、边界特征融合、主干特征增强和预测等若干个阶段构成.在边界特征融合阶段,首先,通过边界特征提取模块获得边界特征并预测边界掩码;然后,边界特征融合模块将边界特征和边界掩码与最低层次的主干特征有效融合;同时,加强伪装目标边界位置及内部区域特征.此外,设计前景引导模块,利用预测的伪装目标掩码增强主干特征,即将前一层特征预测的伪装目标掩码作为当前层特征的前景注意力,并对特征执行空间交互,提升网络对空间关系的识别能力,使网络关注精细而完整的伪装目标区域.本文在4个广泛使用的基准数据集上的实验结果表明,提出的方法优于对比的19个主流方法,对伪装目标检测任务具有更强鲁棒性和泛化能力.

Keyword:

伪装目标检测 前景引导 空间交互 边界先验 边界掩码 边界特征

Community:

  • [ 1 ] 福州大学计算机与大数据学院

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

电子学报

Year: 2024

Issue: 07

Volume: 52

Page: 2279-2290

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:248/10021579
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1