• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Yang, M. (Yang, M..) [1] | Wu, Z. (Wu, Z..) [2] | Zheng, H. (Zheng, H..) [3] | Huang, L. (Huang, L..) [4] | Ding, W. (Ding, W..) [5] | Pan, L. (Pan, L..) [6] | Yin, L. (Yin, L..) [7]

Indexed by:

Scopus

Abstract:

Given the diversity of medical images, traditional image segmentation models face the issue of domain shift. Unsupervised domain adaptation (UDA) methods have emerged as a pivotal strategy for cross modality analysis. These methods typically utilize generative adversarial networks (GANs) for both image-level and feature-level domain adaptation through the transformation and reconstruction of images, assuming the features between domains are well-aligned. However, this assumption falters with significant gaps between different medical image modalities, such as MRI and CT. These gaps hinder the effective training of segmentation networks with cross-modality images and can lead to misleading training guidance and instability. To address these challenges, this paper introduces a novel approach comprising a cross-modality feature alignment sub-network and a cross pseudo supervised dual-stream segmentation sub-network. These components work together to bridge domain discrepancies more effectively and ensure a stable training environment. The feature alignment sub-network is designed for the bidirectional alignment of features between the source and target domains, incorporating a self-attention module to aid in learning structurally consistent and relevant information. The segmentation sub-network leverages an enhanced cross-pseudo-supervised loss to harmonize the output of the two segmentation networks, assessing pseudo-distances between domains to improve the pseudo-label quality and thus enhancing the overall learning efficiency of the framework. This method’s success is demonstrated by notable advancements in segmentation precision across target domains for abdomen and brain tasks. © 2024 by the authors.

Keyword:

cross modality segmentation cross pseudo supervision feature alignment unsupervised domain adaptation

Community:

  • [ 1 ] [Yang M.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
  • [ 2 ] [Wu Z.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
  • [ 3 ] [Zheng H.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
  • [ 4 ] [Huang L.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
  • [ 5 ] [Ding W.]School of Medical Imaging, Fujian Medical University, Fuzhou, 350122, China
  • [ 6 ] [Pan L.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, China
  • [ 7 ] [Yin L.]The Departments of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
  • [ 8 ] [Yin L.]Fujian Provincial Hospital, Fuzhou, 350001, China
  • [ 9 ] [Yin L.]Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Diagnostics

ISSN: 2075-4418

Year: 2024

Issue: 16

Volume: 14

3 . 0 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:51/10135410
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1