Indexed by:
Abstract:
Well-trained neural network models are deployed on edge servers to provide valuable inference services for clients. To protect data privacy, a promising way is to exploit various types of secret sharing to implement privacy-preserving neural network inference. However, existing schemes suffer high communication rounds and overhead, making them hardly practical. In this paper, we propose Cenia, a new communication-efficient privacy-preserving neural network inference model. Specifically, we exploit arithmetic secret sharing to develop low-interaction secure comparison protocols, that can be used to realize secure activation layers (e.g., ReLU) and secure pooling layers (e.g., max pooling) without expensive garbled circuit and oblivious transfer primitives. Besides, we also design secure exponent and division protocols to realize secure normalization layers (e.g., Sigmoid). Theoretical analysis demonstrates the security and low complexity of Cenia. Extensive experiments have also been conducted on benchmark datasets and classical models, and experimental results show that Cenia achieves privacy-preserving, accurate, and efficient neural network inference. Particularly, Cenia can achieve 37.5% and 60.76% of Sonic's communication rounds and overhead, respectively, compared to Sonic (i.e., the state-of-the-art scheme).
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
ISSN: 1556-6013
Year: 2024
Volume: 19
Page: 6722-6737
6 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: