Indexed by:
Abstract:
Among the various non-precious metal catalysts that drive hydrogen evolution reactions (HERs) and dye-sensitized solar cells (DSSCs), transition metal selenides (TMSs) stand out due to their unique electronic properties and tunable morphology. Herein, the multicomponent selenide CuSe-Co3Se4@VSe2 was successfully synthesized by doping with metal element vanadium and selenization on the copper-cobalt carbonate hydroxide (CuCo-CH) template. CuSe-Co3Se4@VSe2 exhibited the dandelion-like cluster structure composed of hollow nanotubes doped with VSe2 nanoparticles. Due to the unique structure and the synergistic effect of various elements, CuSe-Co3Se4@VSe2 showed excellent alkaline HER and DSSC performances. The DSSC based on CuSe-Co3Se4@VSe2 exhibited an impressive power conversion efficiency (PCE) of 9.64 %, which was much higher than that of Pt (8.39 %). Besides, it possessed a low HER overpotential of 76 mV@10 mA cm−2 and a small Tafel slope of 88.9 mV dec−1 in 1.0 M KOH. © 2024 Elsevier Inc.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Journal of Colloid and Interface Science
ISSN: 0021-9797
Year: 2024
Volume: 675
Page: 761-771
9 . 4 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: