Indexed by:
Abstract:
Quantum entanglement marks a definitive feature of topological states. However, the entanglement spectrum remains insufficiently explored for topological states without a bulk energy gap. Using a combination of field theory and numerical techniques, we accurately calculate and analyze the entanglement spectrum of gapless symmetry protected topological states in one dimension. We highlight that the universal entanglement spectrum not only encodes the nontrivial edge degeneracy, generalizing the Li-Haldane conjecture to gapless topological states, but also contains the operator content of the underlying boundary conformal field theory. This implies that the bulk wave function can act as a fingerprint of both quantum criticality and topology in gapless symmetry protected topological states. We also identify a symmetry enriched conformal boundary condition that goes beyond the conventional conformal boundary condition. © 2024 American Physical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Physical Review Letters
ISSN: 0031-9007
Year: 2024
Issue: 2
Volume: 133
8 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: