Indexed by:
Abstract:
问题生成是一项具有挑战性的自然语言处理任务,旨在生成具有给定答案和上下文的问题,近年来受到了广泛关注.最近,由于神经网络的发展,问题生成任务取得了较大的进展.然而,现有模型仍然存在未有效利用外部知识以及在利用图神经网络捕获隐藏结构信息未捕获语法信息等问题.针对上述问题本文提出知识增强双图交互网络KE-BGINN(Knowledge-En-hanced Bi-Graph Interaction Neural Network).首先为了有效利用外部知识信息,KE-BGINN通过知识图谱本身的图结构信息构造知识增强图,并利用图卷积网络对文本以及答案上下文语义信息进行扩充.其次,KE-BGINN引入一种双图交互机制,利用两个图卷积网络学习上下文的隐藏结构信息以及语法信息,在图间信息融合时,构造一个虚拟图来充分融合不同图之间的异构信息.最后,KE-BGINN利用指针网络解码机制来解决问题生成时罕见和未知词的问题.在SQuAD数据集上的实验结果证明,与对比模型相比较,KE-BGINN模型的综合性能更加优异.
Keyword:
Reprint 's Address:
Email:
Source :
小型微型计算机系统
ISSN: 1000-1220
CN: 21-1106/TP
Year: 2024
Issue: 5
Volume: 45
Page: 1032-1038
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: