Indexed by:
Abstract:
Separable nonlinear models (SNLMs) are of great importance in system modeling, signal processing, and machine learning because of their flexible structure and excellent description of nonlinear behaviors. The online identification of such models is quite challenging, and previous related work usually ignores the special structure where the estimated parameters can be partitioned into a linear and a nonlinear part. In this brief, we propose an efficient first-order recursive algorithm for SNLMs by introducing the variable projection (VP) step. The proposed algorithm utilizes the recursive least-squares method to eliminate the linear parameters, resulting in a reduced function. Then, the stochastic gradient descent (SGD) algorithm is employed to update the parameters of the reduced function. By considering the tight coupling relationship between linear parameters and nonlinear parameters, the proposed first-order VP algorithm is more efficient and robust than the traditional SGD algorithm and alternating optimization algorithm. More importantly, since the proposed algorithm just uses the first-order information, it is easier to apply it to large-scale models. Numerical results on examples of different sizes confirm the effectiveness and efficiency of the proposed algorithm. © 2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE Transactions on Neural Networks and Learning Systems
ISSN: 2162-237X
Year: 2024
Issue: 6
Volume: 35
Page: 8695-8701
1 0 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: