• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

林承浩 (林承浩.) [1] | 吴丽君 (吴丽君.) [2]

Abstract:

针对基于混合构架的图像超分模型通常需要较高计算成本的问题,提出了一种基于CNN-Transformer混合构架的轻量图像超分网络STSR(Swin-Transformer-based Single Image Super-Resolution).首先,提出了一种并行特征提取的特征增强模块(Feature Enhancement Block,FEB),由卷积神经网络(Convolutional Neural Network,CNN)和轻量型Transformer网络并行地对输入图像进行特征提取,再将提取到的特征进行特征融合.其次,设计了一种动态调整模块(Dynamic Adjustment,DA),使得网络能根据输入图像来动态调整网络的输出,减少网络对无关信息的依赖.最后,采用基准数据集来测试网络的性能,实验结果表明STSR在降低模型参数量的前提下仍然保持较好的重建效果.

Keyword:

Transformer 卷积神经网络 图像超分辨率 轻量化

Community:

  • [ 1 ] [林承浩]福州大学
  • [ 2 ] [吴丽君]福州大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

网络安全与数据治理

ISSN: 2097-1788

Year: 2024

Issue: 3

Volume: 43

Page: 27-33

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:129/10030793
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1