Indexed by:
Abstract:
遥感技术已成为快速有效获取农业大棚覆盖信息的重要途径,但遥感影像空间分辨率大小对提取精度的影响具有双重性,选择适宜分辨率影像具有重要意义.以南方农业塑料大棚为研究对象,利用GF-1、GF-2和Sentinel-2形成1~16 m间6个不同空间分辨率影像数据集,基于面向对象影像分析方法(Object-Based Image Analysis,OBIA),分别利用面向对象卷积神经网络(Convolutional Neural Network,CNN)方法和随机森林(Random forest,RF)方法开展大棚提取,分析提取精度和不同方法下的差异性.结果表明:①CNN和RF方法下,农业大棚的提取精度随着影像分辨率降低总体呈下降趋势,在1~16 m的影像上均能检测到农业大棚;②相对于RF方法,CNN方法对影像空间分辨率要求更高,在1~2 m分辨率下,CNN方法有更少的漏提和误提,但在4m及更低分辨率下,RF方法的适用性更高;③2 m分辨率影像是大棚信息提取的最佳空间分辨率,可经济有效地实现大棚监测.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
遥感技术与应用
ISSN: 1004-0323
Year: 2024
Issue: 2
Volume: 39
Page: 315-327
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: