Abstract:
针对工业场景下带钢表面缺陷样本少、缺陷尺寸大小不一等问题,提出一种适用于小样本条件下的带钢表面缺陷检测网络.首先,算法以YOLOv5s框架为基础,设计一种融合注意力机制的多尺度路径聚合网络作为模型的颈部,增强模型对缺陷目标的多尺度预测能力;其次,提出一种自适应解耦检测结构,缓解小样本情况下分类和定位任务之间的矛盾;最后,提出一种融合Wasserstein距离的边界框回归损失函数,提升模型对小目标缺陷的检测精度.实验表明,在构建的小样本带钢表面缺陷数据集上,本文模型的检测性能优于其他小样本检测模型,更适用于工业环境下的小样本缺陷检测任务.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机系统应用
ISSN: 1003-3254
Year: 2024
Issue: 5
Volume: 33
Page: 85-93
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: