Indexed by:
Abstract:
网络流量数据的获取较为容易,而对流量数据进行标记相对困难。半监督学习利用少量有标签数据和大量无标签数据进行训练,减少了对有标签数据的需求,能较好适应海量网络流量数据下的异常检测。文章对近年来的半监督网络异常检测领域的论文进行深入调研。首先,介绍了一些基本概念,并深入剖析了网络异常检测中使用半监督学习策略的必要性;然后,从半监督机器学习、半监督深度学习和半监督学习结合其他范式三个方面,分析和比较了半监督网络异常检测领域近年来的论文,并进行归纳和总结;最后,对当前半监督网络异常检测领域进行了现状分析和未来展望。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
信息网络安全
ISSN: 1671-1122
CN: 31-1859/TN
Year: 2024
Issue: 04
Volume: 24
Page: 491-508
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: