Indexed by:
Abstract:
The accuracy of kernel estimation is critical to the performance of blind super-resolution (SR). Traditional kernel estimation methods usually use L1 or L2 loss function to minimize the difference between the estimated kernel and the ground-truth kernel. This tends to make the estimated kernel converge towards the average of all possible kernels, deviating from the ground-truth kernel. To improve the performance of kernel estimation, this paper proposes an uncertainty loss for training a kernel estimation network, focusing on regions with high uncertainty (variance) in the kernel. In addition, a texture-aware SR network is proposed that utilizes the Gumbel Softmax trick to pay more attention to the complex regions of the image texture, thus improving the SR performance. Extensive experiments on synthetic datasets show that our approach achieves promising performance. © 2023 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
Year: 2023
Page: 536-540
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: