Indexed by:
Abstract:
To cope with the threat of image content tampering in real scenes, this paper develops a multi-view spatial-channel attention network (MSCA-Net), which can use multi-view features and multi-scale features to detect whether an image has been tampered with and predict tampered regions. By introducing the frequency domain view of the image, the model can use the noise distribution around the tampered region to learn semantically independent features and detect subtle tampering traces that are difficult to detect in the RGB domain. Secondly, a new Efficient Spatial-Channel Attention Module (ESCM) is proposed to capture the correlation between different channels and between global pixels. MSCA-Net improves the localization performance of tampered regions on real-scene images by generating segmentation masks step by step at multiple scales through a progressive guidance mechanism. MSCA-Net runs very fast and is capable of processing 1080P resolution images at 40FPS+. Extensive experimental results demonstrate the promising performance of MSCA-Net on both image-level and pixel-level tampering detection tasks. © 2024 SPIE. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0277-786X
Year: 2024
Volume: 13089
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: