Indexed by:
Abstract:
A hierarchical sea urchin-like hybrid metal oxide nanostructure of ZnO nanorods deposited on TiO(2)porous hollow hemispheres with a thin zinc titanate interface layer is specifically designed and synthesized to form a combined type I straddling and type II staggered junctions. The HHSs, synthesized by electrospinning, facilitate light trapping and scattering. The ZnO nanorods offer a large surface area for improved surface oxidation kinetics. The interface layer of zinc titanate (ZnTiO3) between the TiO(2)HHSs and ZnO nanorods regulates the charge separation in a closely coupled hierarchy structure of ZnO/ZnTiO3/TiO2. The synergistic effects of the improved light trapping, charge separation, and fast surface reaction kinetics result in a superior photoconversion efficiency of 1.07% for the photoelectrochemical water splitting with an outstanding photocurrent density of 2.8 mA cm(-2)at 1.23 V versus RHE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2024
Issue: 29
Volume: 35
2 . 9 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: