Indexed by:
Abstract:
The adaptive finite element limit analysis (AFELA) method was employed to simulate the active failure mechanisms and plastic region distribution properties under complex backfill conditions to study the active earth pressure of backfill near a firm slope on gravity walls rotating about the bottom. The simulation results revealed that the backfill progressively fails from top to bottom and the backfill in the area above the failure surface enters a plastic state. The slip -line method was combined with the pseudo -static technique to compute the seismic active earth pressure. Compared with the traditional limit analysis method and limit equilibrium method, the seismic slip line method does not need to pre -assume the failure mechanisms. The reliability and rationality of the method are confirmed by comparing the computation results of the seismic slip line method with the computation results of the finite element limit analysis method, the existing experimental data, and the existing theoretical solutions. Furthermore, the impacts of parameters such as backfill geometries, seismic acceleration, and interface strength on seismic active earth pressure are discussed in detail.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
ISSN: 0267-7261
Year: 2024
Volume: 181
4 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: