Indexed by:
Abstract:
Accurate ocean environment perception is crucial for weather and climate prediction. Environmental limitations and deployment costs constrain satellite and buoy real-time observation, leading to sparse data availability. This paper proposes a novel approach, multimodal fusion -based spatiotemporal incremental learning, enhancing the ocean environment perception under sparse observations. This method uses sparse real-time observations to comprehend, reconstruct, and predict the full environment. First, spatiotemporal disentanglement decouples intrinsic features by integrating physical principles and data learning. Subsequently, incremental extension captures the dynamic environment through stable representation updating and dynamic behavior learning. Then, multimodal information fusion synergizes multisource intrinsic features, enabling the full perception of the ocean environment. Finally, the methodology is supported by convergence analysis and error boundary evaluation. Validation with global sea surface temperature and western Pacific Ocean highdimensional temperature datasets demonstrates its potential for advancing ocean research and applications using sparse real-time observation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INFORMATION FUSION
ISSN: 1566-2535
Year: 2024
Volume: 108
1 4 . 8 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: