Abstract:
在恶劣天气中拍摄的图片,由于雨雪霾等恶劣天气的影响会对视线有一定的阻挡,导致可见度下降严重,图片的背景失真严重,从而对图片识别、语义分割或者目标监测产生很大的误差.此前,大多数的天气退化图像的修复都是基于深度学习算法或是生成对抗网络为基本架构的,由于去噪扩散模型(DDPM)在计算机视觉上的优势比较大,所以采用以扩散模型为基本架构来进行雨类的天气退化图像的反向采样,经典扩散模型的噪声估计网络是基于U-Net的结构,现提出了一种改进的U-Net噪声估计网络结构,将通道自适应注意力机制与U-Net结合,在图像去雨方面有着较好的恢复表现.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
信息技术与信息化
ISSN: 1672-9528
Year: 2024
Issue: 3
Page: 208-211
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: