Abstract:
针对遥感图像中背景复杂、小目标分布密集以及易受环境因素影响导致检测性能不佳的问题,提出一种改进的YOLOv5s目标检测算法。首先,通过设计一种混淆鉴别注意力机制(Confusion-Distinguishable Attention,CDA)来避免目标与背景之间的混淆,提高对目标信息的关注度,能够有效提升目标检测的准确性和健壮性。其次,在原结构的颈部添加小目标检测层,解决小目标分布紧密、漏检的现象,从而提高算法的多尺度目标检测性能。最后,在DOTA数据集中进行实验和验证。实验结果表明,所提算法能够明显提高遥感图像目标检测的平均准确率。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电视技术
ISSN: 1002-8692
CN: 11-2123/TN
Year: 2024
Issue: 01
Volume: 48
Page: 8-11
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: