Indexed by:
Abstract:
Cell selection and data offloading are the keys to obtaining MCS services with low sensing cost and low data processing delay. Due to the spatiotemporal correlation between data and the local-area coverage of edge servers, cell selection and data offloading will affect each other and require co-optimization. To achieve the co-optimization, we design the method OptInter based on the hierarchical reinforcement learning. OptInter can realize the interactive training between cell selection model and data offloading model. Finally, we evaluate our proposed method based on four datasets, each of which composited by real-world (e.g., NO22 concentration, AQI value, Didi order, and Didi trajectory) data and simulated data. Compared with the four baseline methods (e.g., OptMOEA/D, OptStageCD, OptStageDC, and OptWeight), the comprehensive performance of our proposed method can be improved by 11.83%, 20.48%, 10.14%, and 42.27% on average, respectively. © 2002-2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Transactions on Mobile Computing
ISSN: 1536-1233
Year: 2024
Issue: 5
Volume: 23
Page: 6088-6103
7 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: