• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Xie, Shiwei (Xie, Shiwei.) [1] (Scholars:谢仕炜) | Chen, Kaiyue (Chen, Kaiyue.) [2] | Zhang, Yachao (Zhang, Yachao.) [3] (Scholars:张亚超) | Xie, Longtao (Xie, Longtao.) [4] | Wu, Qiuwei (Wu, Qiuwei.) [5]

Indexed by:

EI Scopus PKU CSCD

Abstract:

A surge in EVs is bound to greatly impact on urban power grids and transportation networks. Studying how to accurately describe the impact of electric vehicle behaviors on the power-transportation network is of great significance. This paper considers the elasticity of demand for electric vehicles and their charging behaviors and introduces the quasi-variational inequalities (QVIs) to address the complexity of the game behavior modeling in the coupled network as well as its solution challenges. First, a hybrid traffic flow model is built, which includes the elastic demand and charging behavior of EVs. On this basis, a QVI framework is proposed to characterize the elastic mixed user equilibrium state, and its equivalence to the equilibrium state is proved. Secondly, a second-order cone programming model for the distribution network considering charging loads is proposed, and the coupling relationship between the two networks is established. Then, the mechanism of the coupled network is described as a double-layer game problem using fixed-point mapping. Given the characteristics of inner and outer game problems, an outer fixed point iteration algorithm and an inner viscous projection approximation algorithm are developed respectively to form a complete method for identifying the equilibrium state of the two-layer game. The simulation based on a test system in Fuzhou verifies the effectiveness of the modeling and solving methods in this paper, which shows the necessity of considering the elastic demand of EVs for the equilibrium state analysis of the coupled networks. ©2024 Chin.Soc.for Elec.Eng.

Keyword:

Approximation algorithms Electric loads Electric power distribution Electric vehicles Game theory Iterative methods Second-order cone programming Urban transportation Variational techniques

Community:

  • [ 1 ] [Xie, Shiwei]School of Electrical Engineering and Automation, Fuzhou University, Fujian Province, Fuzhou; 350108, China
  • [ 2 ] [Chen, Kaiyue]School of Electrical Engineering and Automation, Fuzhou University, Fujian Province, Fuzhou; 350108, China
  • [ 3 ] [Zhang, Yachao]School of Electrical Engineering and Automation, Fuzhou University, Fujian Province, Fuzhou; 350108, China
  • [ 4 ] [Xie, Longtao]School of Electrical Engineering and Automation, Fuzhou University, Fujian Province, Fuzhou; 350108, China
  • [ 5 ] [Wu, Qiuwei]Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong Province, Shenzhen; 518055, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Proceedings of the Chinese Society of Electrical Engineering

ISSN: 0258-8013

CN: 11-2107/TM

Year: 2024

Issue: 6

Volume: 44

Page: 2185-2196

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:287/9688032
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1