Indexed by:
Abstract:
Robots are increasingly being used in rehabilitation to assist patients with physical disabilities, particularly the knee joint. Physiotherapists often practice the patient's leg around the knee joint to strengthen the muscles. However, Continuous Passive Motion (CPM) devices face challenges such as lack of feedback and resistance. This thesis aims to address these issues by using admittance and impedance concepts to control the robot's flexible behavior against individual foot forces. The research uses a combination of backstepping and admittance algorithms, Model Reference Adaptive Control (MRAC), Sliding-Backstepping and Admittance Control to create a soft interactive patient-robot interaction. The device is designed for both left and right legs.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
ISSN: 0954-4062
Year: 2024
1 . 8 0 0
JCR@2023
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: