Indexed by:
Abstract:
The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with CN bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO. The artificially induced imbalance in the nitrogen cycle necessitates urgent need for NO removal. This review highlights recent advances in selective electrocatalytic NO conversion into valuable chemicals, emphasizing catalyst design, electrolyte composition, mass diffusion, and adsorption energies. It elucidates reaction pathways and mechanisms, providing insights into the challenges and prospects of NO electrolysis and enhancing awareness of the nitrogen cycle. image
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2024
Issue: 18
Volume: 36
2 7 . 4 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: