Indexed by:
Abstract:
Existing graph systems focus mainly on the execution efficiency of the graph analysis tasks, often ignoring the importance and efficiency of time-evolving graph storage. However, to effectively mine the potential application values, an efficient storage system is important for time-evolving graphs whose storage requirement scales with the increasing number of snapshots. Storage cost and snapshot access speed are the two most important performance indicators for a time-evolving graph storage system, which are challenging for designers of such systems because they are conflicting goals. In this article, we address these challenges by proposing an efficient storage scheme for the large time-evolving graphs. We first design a Snapshot-level Data Deduplication (SLDD) strategy to eliminate the large number of repeated vertices and edges among the snapshots, and then a Structure-Changing Graph Representation (SCGR) to significantly improve the snapshot access speed. We implement an efficient time-evolving graph storage system, TgStore, based on this scheme to effectively store large-scale time-evolving graphs, aiming to efficiently support the time-evolving graph analysis tasks. Experimental results show that TgStore can obtain a high compression ratio of 43.03:1 when storing 100 snapshots of Twitter, while with an average snapshot access speedup of 16x. Efficient storage scheme enables TgStore to efficiently support time-evolving graph algorithms. For example, when executing the Pagerank algorithm on the time-evolving graph of Twitter, TgStore outperforms Graphone, a state-of-the-art time-evolving graph storage system, by 15.9x in algorithm execution speed and 1.45x in memory usage.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON BIG DATA
ISSN: 2332-7790
Year: 2024
Issue: 2
Volume: 10
Page: 158-173
7 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: