Indexed by:
Abstract:
The nonlinear parity-time-symmetric wireless power transfer (PT-WPT) system has garnered significant attention for its robustness against variations in the coupling coefficient. Currently, the implementation of nonlinear negative resistance primarily relies on switch-mode converters. Among these, the conventional PT-WPT system based on self-excited converters faces challenges such as limited output power and overall system efficiency (OSE). In this article, we propose a novel dual-supply self-excited PT-WPT system designed to address these challenges, offering a cost-effective solution. We present the circuit, coupled-mode model, and PT-symmetric condition of the proposed system. Furthermore, stability criteria of the system at each equilibrium point are analyzed using Lyapunov's first method. Finally, we implement a single-supply system to validate the correctness of the models and stability criteria. In addition, a dual-supply system is constructed, achieving an output power of 101.2 W with OSE of 89.2%.
Keyword:
Reprint 's Address:
Version:
Source :
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING
ISSN: 2694-1783
Year: 2024
Issue: 2
Volume: 47
Page: 78-86
2 . 1 0 0
JCR@2023
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: