• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Sun, Zhishu (Sun, Zhishu.) [1] | Lin, Luojun (Lin, Luojun.) [2] (Scholars:林洛君) | Yu, Yuanlong (Yu, Yuanlong.) [3] (Scholars:于元隆)

Indexed by:

EI Scopus SCIE

Abstract:

With the growing significance of data privacy protection, Source-Free Domain Adaptation (SFDA) has gained attention as a research topic that aims to transfer knowledge from a labeled source domain to an unlabeled target domain without accessing source data. However, the absence of source data often leads to model collapse or restricts the performance improvements of SFDA methods, as there is insufficient true-labeled knowledge for each category. To tackle this, Source-Free Active Domain Adaptation (SFADA) has emerged as a new task that aims to improve SFDA by selecting a small set of informative target samples labeled by experts. Nevertheless, existing SFADA methods impose a significant burden on human labelers, requiring them to continuously label a substantial number of samples throughout the training period. In this paper, a novel approach is proposed to alleviate the labeling burden in SFADA by only necessitating the labeling of an extremely small number of samples on a one-time basis. Moreover, considering the inherent sparsity of these selected samples in the target domain, a Self-adaptive Clustering-based Active Learning (SCAL) method is proposed that propagates the labels of selected samples to other datapoints within the same cluster. To further enhance the accuracy of SCAL, a self-adaptive scale search method is devised that automatically determines the optimal clustering scale, using the entropy of the entire target dataset as a guiding criterion. The experimental evaluation presents compelling evidence of our method's supremacy. Specifically, it outstrips previous SFDA methods, delivering state-of-the-art (SOTA) results on standard benchmarks. Remarkably, it accomplishes this with less than 0.5% annotation cost, in stark contrast to the approximate 5% required by earlier techniques. The approach thus not only sets new performance benchmarks but also offers a markedly more practical and cost-effective solution for SFADA, making it an attractive choice for real-world applications where labeling resources are limited. We propose a novel approach to alleviate the labeling burden in SFADA by only necessitating the labeling of an extremely small number of samples on a one-time basis. Moreover, considering the inherent sparsity of these selected samples in the target domain, we propose a Self-adaptive Clustering-based Active Learning (SCAL) method that propagates the labels of selected samples to other datapoints within the same cluster. To further enhance the accuracy of SCAL, we devise an self-adaptive scale search method that automatically determines the optimal clustering scale, using the entropy of the entire target dataset as a guiding criterion.image

Keyword:

computer vision image recognition

Community:

  • [ 1 ] [Sun, Zhishu]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
  • [ 2 ] [Lin, Luojun]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China
  • [ 3 ] [Yu, Yuanlong]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China

Reprint 's Address:

  • 林洛君

    [Lin, Luojun]Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Peoples R China

Show more details

Related Keywords:

Source :

IET IMAGE PROCESSING

ISSN: 1751-9659

Year: 2024

Issue: 5

Volume: 18

Page: 1268-1282

2 . 0 0 0

JCR@2023

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:110/10459359
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1