Home>Results

  • Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

[期刊论文]

A superhydrophobic zirconium-based metal-organic framework/cellulose fiber composite material

Share
Edit Delete 报错

author:

Hu, H. (Hu, H..) [1] | Li, Y. (Li, Y..) [2] | Hong, X. (Hong, X..) [3] | Unfold

Indexed by:

Scopus

Abstract:

Cleanup of oil spills has become one of the most challenging tasks in recent years, as marine oil spills have had a great negative impact on human health and the ecological environment. This also urgently requires the development of new materials and methods with superhydrophobic properties for oil–water separation. As new porous materials, metal–organic frameworks (MOFs) have attracted much attention due to their unique structures and fascinating properties. However, powdered MOF materials are difficult to recycle, and therefore, suitable substrates need to be selected to construct superhydrophobic composites. The surface hydroxyl groups of cellulose fibers offer great possibilities for their superhydrophobic preparation. In this paper, HDTMS-UiO-66@CFs composites with superhydrophobicity were strategically synthesized by in-situ growth of Zr(IV)-based MOFs linked to hexadecyltrimethoxysilane (HDTMS) on cellulosic fibers (cotton fabric) by using a hydrothermal synthesis method. The HDTMS-UiO-66@CFs composites have a water contact angle of 172° and the absorption capacity of light oil and heavy oil is more than 1100%, and the oil–water separation efficiency is as high as 96%. Due to the in-situ growth of the HDTMS-UiO-66 material on cotton fibers, which makes the material more resistant and stable, the material can still maintain its superhydrophobic properties in various harsh environments and after repeated use. Therefore, the newly developed HDTMS-UiO-66@CFs composites have a high potential as novel adsorbent materials for cleaning up offshore oil spills and other applications. Highlights: In-situ growth of superhydrophobic metal-organic frameworks (MOF) particles on cellulose fibers. The porous structure of hexadecyltrimethoxysilane (HDTMS)-UiO66 plays a key role in hydrophobicity. HDTMS-UiO66@CFs are chemically stable and have long-term durability. © 2024 Society of Plastics Engineers.

Keyword:

cotton fabrics hydrophobicity oil–water separation zirconium-based metal-organic framework

Community:

  • [ 1 ] [Hu H.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 2 ] [Li Y.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 3 ] [Hong X.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 4 ] [Li Q.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 5 ] [Rao R.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 6 ] [Gong Z.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 7 ] [Zheng Y.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
  • [ 8 ] [Zheng Y.]Key Lab New Rubber & Plastic Material, Quanzhou, China

Reprint 's Address:

Show more details

Source :

Polymer Engineering and Science

ISSN: 0032-3888

Year: 2024

Issue: 5

Volume: 64

Page: 1981-1992

3 . 2 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:42/10138752
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1