Indexed by:
Abstract:
针对现有群体推荐方法较少考虑群体成员间社会化关系的隐式估计以及利用群体共识减少偏好冲突的问题,提出一种基于隐式信任和群体共识的群体推荐方法(GR-TC),所提方法分为推荐阶段和共识阶段.在推荐阶段根据成员间偏好信息和社交关系挖掘隐式信任值,估计成员的个人偏好、权重和初始群体偏好;在共识阶段通过共识测量和识别规则识别不一致成员,建立最大和谐度优化共识模型,调整更新群体偏好,传递群体推荐列表.实验结果表明,成员间社交关系影响群体推荐结果,合理选择隐式信任权值会提高不一致成员的和谐度;相较于传统共识反馈机制,隐式信任诱导的最大和谐共识反馈机制调整成本更小,对不一致成员的影响更小.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2024
Issue: 2
Volume: 44
Page: 460-468
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: