Indexed by:
Abstract:
Community detection is widely used in network analysis, which seeks to divide network nodes into distinct communities based on the topology structure and attribute information of the network. Due to its interpretability, nonnegative matrix factorization becomes an essential method for community detection. However, it decomposes the adjacency matrix and attribute matrix separately, which do not tightly incorporate topology and attributes. And in the problem of division inconsistency based on topology and attributes caused by the mismatch between the topology similarity and attribute similarity of paired nodes, it ignores the difference in the matching degree of each attribute and each node. In this paper, we propose a nonnegative matrix factorization algorithm for community detection (MTACD) based on the matching degree between topology and attribute. First, we employ an attribute embedding mechanism to enhance the node-attribute relationship. Second, we design an attribute matching degree and a node topology-and-attribute matching degree in order to resolve the mismatch between topology and attribute similarity. Experiments on both real-world and synthetic networks demonstrate the effectiveness of our algorithm. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 1865-0929
Year: 2024
Volume: 2012
Page: 137-151
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: