Abstract:
对抗样本常常被视为对深度学习模型鲁棒性的威胁,而现有对抗训练往往会降低分类网络的泛化精度,导致其对原始样本的分类效果降低。因此,提出了一个基于生成式自监督学习的对抗样本分类算法,通过自监督学习训练生成式模型获取图像数据潜在特征的能力,并基于该模型实现对抗样本的特征筛选,而后将其中有益分类的信息反馈给分类模型。最后进行联合学习,完成端到端的全局训练,进一步实现分类模型泛化精度的提升。在MNIST、CIFAR10和CIFAR100数据集上的实验结果显示,与标准训练相比,该算法将分类精度分别提高了0.06%、1.34%、0.89%,达到99.70%、84.34%、63.65%。结果证明,该算法克服了传统对抗训练降低模型泛化性能的固有缺点,并进一步提高了分类网络的精度。
Keyword:
Reprint 's Address:
Email:
Source :
微电子学与计算机
ISSN: 1000-7180
CN: 61-1123/TN
Year: 2024
Issue: 02
Page: 11-18
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: