Abstract:
为保护多方医院数据隐私以及数据不平衡等问题,以肾脏肿瘤CT影像为研究对象,提出一种基于个性化联邦学习的肾脏肿瘤分割方法.首先,以经典的深度残差网络SEResNet为基础,结合深监督模块来提高目标分割的精度;其次,在联邦平均算法框架下,引入基础层与个性化层联合学习策略,克服多方数据不平衡带来模型精度下降问题.经KiTS21挑战赛数据集实验验证,文章方法获得的肾脏+肿瘤+囊肿、肿瘤+囊肿和肿瘤分割Dice分别为93.61%、67.18%、61.01%,与集中式学习相比,仅分别低 0.56%、7.18%和 9.34%,表明本文方法以可接受的精度损失换取了数据的隐私安全.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
长江信息通信
ISSN: 2096-9759
CN: 42-1914/TN
Year: 2023
Issue: 12
Volume: 36
Page: 1-5,9
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 18
Affiliated Colleges: