Abstract:
行人重识别是跨摄像头追踪的关键环节之一,主流方法多采用ImageNet进行预训练,忽视了数据集的域间差异,且以结构庞大的多分支模型居多,模型复杂度较高.本文设计一种行人重识别方法,采用基于原始视频带噪声标签参与监督的方式进行预训练,减少域间差异以提升特征表达能力;以基于注意力的特征融合方式取代残差网络的跳接映射,增强网络的特征提取能力;在网络中嵌入坐标注意力机制,在低复杂度的情况下强化关键特征,抑制低贡献特征;采用随机擦除对输入数据做数据增强以提高泛化能力,联合分类损失、三元组损失和中心损失函数对网络进行监督训练.在公开数据集Market-1501和Duke-MTMC上完成了消融实验,与主流方法对比实验表明本方法在不需要复杂多分支逻辑结构的前提下,仍可达到较高的精度.
Keyword:
Reprint 's Address:
Version:
Source :
智能计算机与应用
ISSN: 2095-2163
CN: 23-1573/TN
Year: 2024
Issue: 1
Volume: 14
Page: 95-101
Affiliated Colleges: