Indexed by:
Abstract:
Short answer scoring is a significant task in natural language processing. On datasets comprising numerous explicit or implicit symbols and quantization entities, the existing approaches continue to perform poorly. Additionally, the majority of relevant datasets contain few-shot samples, reducing model efficacy in low-resource scenarios. To solve the above issues, we propose a Multi-level Semantic Inference Model (M-Sim), which obtains features at multiple scales to fully consider the explicit or implicit entity information contained in the data. We then design a prompt-based data augmentation to construct the simulated datasets, which effectively enhance model performance in low-resource scenarios. Our M-Sim outperforms the best competitor models by an average of 1.48 percent in the F1 score. The data augmentation significantly increases all approaches' performance by an average of 0.036 in correlation coefficient scores.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
COMPUTER SPEECH AND LANGUAGE
ISSN: 0885-2308
Year: 2023
Volume: 84
3 . 1
JCR@2023
3 . 1 0 0
JCR@2023
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: