Indexed by:
Abstract:
The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of similar to 150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1,530 mA center dot g(-1) at a current density of 100 mA center dot g(-1) after 200 cycles, as well as a high rate capability of 615 mAh center dot g(-1) at 2,000 mA center dot g(-1). Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.
Keyword:
Reprint 's Address:
Email:
Source :
NANO RESEARCH
ISSN: 1998-0124
Year: 2017
Issue: 1
Volume: 10
Page: 121-133
7 . 9 9 4
JCR@2017
9 . 6 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 43
SCOPUS Cited Count: 41
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: